skip to main content


Search for: All records

Creators/Authors contains: "Juretus, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Vulnerabilities of key based analog obfuscation methodologies that modify the transistor dimensions of a circuit are evaluated. Two attack vectors on a common source amplifier, differential amplifier, operational amplifier, and voltage controlled oscillator are developed. The first attack exploits the lack of possible key combinations permitted around the correct key, which is a result of requiring a unique key to lock the circuit. An average of 5 possible key combinations were returned in an average of 5.47 seconds when executing the key spacing attack. The second attack vector utilizes the monotonic relationship between the sizing of the transistors and the functional response of the circuit to determine the correct key. The average time to execute the attack, while assuming process, voltage, and temperature (PVT) variation of 10%, was 1.18 seconds. Both equal key spacing and non-monotonic key dependencies are discussed as ways to mitigate the threats to future analog obfuscation techniques. 
    more » « less
  2. Our everyday lives are impacted by the widespread adoption of wireless communication systems integral to residential, industrial, and commercial settings. Devices must be secure and reliable to support the emergence of large scale heterogeneous networks. Higher layer encryption techniques such as Wi-Fi Protected Access (WPA/WPA2) are vulnerable to threats, including even the latest WPA3 release. Physical layer security leverages existing components of the physical or PHY layer to provide a low-complexity solution appropriate for wireless devices. This work presents a PHY layer encryption technique based on frequency induction for Orthogonal Frequency Division Multiplexing (OFDM) signals to increase security against eavesdroppers. The secure transceiver consists of a key to frequency shift mapper, encryption module, and modified synchronizer for decryption. The system has been implemented on a Virtex-7 FPGA. The additional hardware overhead incurred on the Virtex-7 for both the transmitter and the receiver is low. Both simulation and hardware evaluation results demonstrate that the proposed system is capable of providing secure communication from an eavesdropper with no decrease in performance as compared with the baseline case of a standard OFDM transceiver. The techniques developed in this paper provide greater security to OFDM-based wireless communication systems. 
    more » « less
  3. Obfuscation of the orthogonal frequency-division multiplexing (OFDM) physical layer is described in this paper as a means to enhance the security of wireless communication. The standardization of the communication channel between two trusted parties results in a variety of security threats, including vulnerabilities in WPA/WPA2 protocols that allow for the extraction of the software layer encryption key. Obfuscating the physical layer of the OFDM pipeline provides an additional layer of security in the event that the software layer key is compromised and allows for rolling updates of the physical layer key without altering the software layer key. The interleaver stage of the OFDM pipeline is redesigned to utilize a physical layer key, which is termed Phy-Leave. The Phy-Leave interleaver is evaluated through both MATLAB simulation and hardware prototyping on the Software Defined Communication (SDC) testbed using a Virtex6 FPGA. The implemented rolling physical layer key policy and Phy-Leave system resulted in a less than 1% increase in the area of a Virtex6 FPGA, demonstrating physical layer obfuscation as a means to increase the security of wireless communication without a significant cost in hardware. 
    more » « less
  4. As wireless devices hold prominent roles as means of communication, developing strong security methods against sophisticated cyber-attacks has become paramount. A novel physical layer based technique for securing wireless communication between the transmitter and receiver is described in this paper. The technique involves obfuscating the preamble data of the baseband signal through unique keys that are independently generated at both the transmitter and the receiver based on channel characteristics known only to the pair. The obfuscation technique is developed on the Drexel Software Defined Communication testbed on a Xilinx Virtex 6 ML605 board. 
    more » « less